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Motivation

A zoo of link polynomials

Fact
The Jones polynomial is uniquely determined by its value on the unknot
and the oriented skein relation:

GV(R) - g 2V(R) = (g - HV(
Varying this skein relation, we get other link polynomials:
o ¢"Py(X) — g NPy(R) = (g —q )Pn(T) sl polynomial.
0 aPo(R) —atP(5%) = (9 — g 1)Ps(’) HOMFLY-PT polynomial
o A(R)—A(R) =(q—q 1)A(T) Alexander-Conway polynomial

For framed links, you get even more invariants from cabling operations.
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Motivation

Reshetikhin-Turaev link invariants

The Reshetikhin-Turaev invariants for links in R? give a function:
{triples (L, g,col)} LN Zlqg™Y
e L is a framed, oriented link in IR3,
@ g is a complex semi-simple Lie algebra,

e col: mo(L) — Irrep’9(g) is a coloring of the link components by
finite-dimensional irreducible representations of g.

E.g. V(L) = RT(L,sly,C?) and Py(L) = RT(L,sly, CN).
Question
How does this function depend on the three arguments?

For this talk:
o Lie algebras are of type A: g = sl for various N € N.
o Mostly colorings by irreps CV and AXCN for 0 < k < .
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Motivation

Varying the coloring

The finite-dimensional irreducible representations of sl are indexed by
k € N (in fact Vj := Sym*(©?)). Redundancies in this countably-infinite
list of invariants?

Theorem (Garoufalidis-L&)

Let K be a framed knot in R3. The sequence of colored Jones polynomials
(RT(K, sl2, Sym*(©?)))xen is g-holonomic.

So the sequence is governed by a linear recurrence relation (with
coefficients polynomials in g and g¥) and, thus, determined by a finite part.

Analogous results hold for sly, for colored HOMFLY-PT polynomials, for
links, with other sequences of colors... Garoufalidis-Lauda-L&.
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Motivation

Varying the link?

Lie algebras and colorings can be varied in families. Some links come in
families too, but let's take a different perspective.

Instead of just links, consider link embeddings in R® and smooth
cobordisms between them (in IR3 x /). Need categorified RT invariants:

link homology LH bi_graded vector spaces Cobordisms:
______ ’ H.(graded chain complex) (\ LH(3 )
1

-’
’

1

1 Xq
{g-colored oriented links} — 2L Z[q™] [
LH(

01)
Ideally functorial under link cobordisms.

Goal for this talk
Overview about the rank- and color-dependence of type A link homologies.
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sI(N) link homologies

© s!I(N) link homologies
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sI(N) link homologies

Khovanov homology and its cousins

@ 1999: Khovanov homology categorifies the Jones polynomial.
Kh(Q) = H*(CP){-1}
@ 2004: Khovanov-Rozansky homology categorifies RT'(—, sly, CV).
KhRNV(O) = H*(CPN1H{1 - N}

@ 2009: Wu and Yonezawa extended Khovanov-Rozansky homology to a
categorification of RT(—, sy, A“CN): colored sly link homology.

KhRN(OF) = H*(Gr(k, N)){k(k — N)}

KhRM(K') = KhRV(K)

Paul Wedrich Some differentials MATRIX 2016 8/ 39



sI(N) link homologies

Flavors of colored sly link homologies

@ Vanilla: via matrix factorizations, Khovanov-Rozansky, Wu, Yonezawa.
© Representation theoretic: via category O, Mazorchuk-Stroppel, Sussan.
© Combinatorial: via cobordism or foam categories, Bar-Natan,
Khovanov, Mackaay-Stosi¢é-Vaz, Lauda-Queffelec-Rose.

Q Algebro-geometric: via affine Grassmannians, Cautis-Kamnitzer-Licata
© Diagram-algebraic: via categorified tensor products, Webster.

@ Symplectic: via Floer homology, Seidel-Smith, Manolescu, Abouzaid.
@ Physical: via BPS state counting, Gukov-Schwarz-Vafa, et.al.
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sI(N) link homologies

Two questions about the sly link homology family

@ What kind of geometric and topological information is accessible to it?

@ What relations exist between its members?
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sI(N) link homologies

Geometric and topological information

Concordance homomorphisms, slice genus bounds, Rasmussen, Lobb,
Wu.

Thurston-Bennequin number bounds, Shumakovitch, Plamenevskaya,
Ng.
Splitting number bounds, Batson-Seed.

Unknot detection, Kronheimer-Mrowka.

Fact
These results rely on spectral sequences between different link homologies.
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sI(N) link homologies

Relations via deformation spectral sequences

@ 2002: Lee constructed spectral sequences

Kh(K) ~ €2 Kh(L) ~ ¢2™"

leading to Rasmussen’s concordance homomorphism.

@ 2004: Gornik constructed spectral sequences
KhRV(K) ~ €N KhRM(L) ~» V™"

leading to Lobb's concordance homomorphism.

@ 2006: Mackaay-Vaz constructed spectral sequences:

KhR3(K) ~» KhR?(K) & C
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sI(N) link homologies

More deformations

Theorem (folklore)

Let K be a knot and ) N; = N with N; € N, then there exists a
deformation spectral sequence:

KhRV(K) ~ @KhRN

Theorem (Rose-W. 2015)

Let K be a knot and 3" N; = N with N; € N, and write K* for K colored
by N“CN, then there exists a deformation spectral sequence:

KhRM(K¥) ~ @ QKRN (KY)
> ki=k J
Mutatis mutandis for links.
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Deformations

© Deformations
@ of Khovanov homology
e of s/(N) link homologies
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Deformations  of Khovanov homology

Bar-Natan’s construction of Khovanov homology

The cube of resolutions as a chain complex:

X
&
£
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Deformations  of Khovanov homology

Bar-Natan’s construction of Khovanov homology

Bar-Natan: Let Cob be the category consisting of
@ Objects: formal direct sums of planar compact 1-manifolds,

@ Morphisms: matrices of C-linear combinations of “dotted” oriented
cobordisms between 1-manifolds, modulo isotopy and local relations:

oo [ i

Cob admits a grading and Homcp (0, —) is a functor from Cob to graded
vector spaces.

Eg. Homcob( > <@ @> 4, qg+qt
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Deformations  of Khovanov homology

Bar-Natan’s construction of Khovanov homology

After applying the TQFT:
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Deformations  of Khovanov homology

Bar-Natan’s construction of Khovanov homology

After taking homology...
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Deformations  of Khovanov homology

Lee’s deformation of Khovanov homology

Bar-Natan, Morrison: Let Cob’ be defined as before, but with the following
set of relations

oo §-ES BN

The cube of resolutions chain complex in Cob’ is also a link invariant up to
homotopy. Applying the functor Homcop (0, —) gives a complex of vector
spaces, taking homology recovers Lee's deformation of Khovanov homology.
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Deformations  of Khovanov homology

The cube of resolutions again...
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Deformations  of Khovanov homology

Lee’s deformation of Khovanov homology

Have orthogonal idempotents:

R

Can split every connected component of a cobordism into red and blue.
Red and blue pairs of pants are isomorphisms, e.g.
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Deformations  of Khovanov homology

.. after a change of basis
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Deformations  of Khovanov homology

. and after Gaussian elimination

0

T~
& S

—
Q , QO
Q Q. @

)
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Deformations  of s/(N) link homologies

Proof strategy

Theorem (Rose-W. 2015)

Let K be a knot and > N; = N with N; € N, and write K for K colored
by /\k(DN , then there exists a deformation spectral sequence:

KhRN(Kk) ~ @ ®KhRNj(Kkj)

Sk=k J

@ Wu's spectral sequence
@ Unknot case

© P decomposition

Q ) decomposition

© Identifying tensor factors
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Deformations  of s/(N) link homologies

Proof Step 1 — Wu's spectral sequence

© Wu's construction of colored sly homology uses matrix factorization
with potential XNV,

Following ideas of Gornik and Rasmussen:

Potential P(X) = [[,ex(X — A) € C[X] of degree N with root
multiset X gives a singly-graded, filtered link homology theory
KhR*(—) and spectral sequences

KhRN(K*) ~» KhR*(K*)

It remains to compute KhR*(K*) in terms of undeformed homologies.
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Deformations  of s/(N) link homologies

Proof Step 2 — The unknot case

© The link homology theory KhR*(—) contains — and is controlled by —
a (1 4 1)-dimensional TQFT. The corresponding commutative
Frobenius algebra appears as the unknot invariant.

Let & = {AM", ..., AV}, P(X) = [T,(X — A))", then we have:

Summands are indexed by roots of P(X). And in the colored case:

Sym[X
KhRH(O) = (hn— k+:(;§] [Z]) | i>1) zEkBk(?KhRN ©%

Summands are indexed by size k multisubsets {)\i‘l, . .,)\f’} of roots.
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Deformations  of s/(N) link homologies

Proof Step 3 — The @ decomposition

© KhRE(K¥) is a KhR*((O¥)-module.

If you believe in functoriality:

If not, let’s talk about foams ...
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Deformations  of s/(N) link homologies

Foam technology

Lauda-Queffelec-Rose: The foam category NFoam consists of
@ Objects: formal direct sums of leftward oriented, labeled, planar,

trivalent graphs, built from: b:{>—(—a+b , a+b+{b

@ Morphisms: matrices with entries being C-linear combinations of
decorated, singular cobordisms between webs generated by

modulo isotopy and local relations.
Paul Wedrich Some differentials MATRIX 2016 28 / 39



Deformations  of s/(N) link homologies

Foam technology

Lauda-Queffelec-Rose:

N
NFoam®: additional relation ( ) =

Il
o

NFoam™: additional relation P ( > =0

Colored sl link homologies KhRV(—) and their deformations KhR*(—)
can be computed via complexes in NFoam® and NFoam™:

@ Link diagram + crossing replacement rule — cube of resolutions chain
complex.

@ Applying a representable functor gives a complex of vector spaces.
@ Its homology is the desired link invariant.
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Deformations  of s/(N) link homologies

Proof Step 3 — The @ decomposition

@ KhR*(K*) is a KhR*((O¥)-module: In NFoam™ we have
Decorations ( ) =~ KhR*(O).

Facets split into sum over idempotent decorations <> multisets A C %.

B

s
Compatibility: A =0 fAUB#C

V)
<

7

The actions on facets are compatible along link components:
P q
—(—\ ~ —(—\
_(_/: _(_/:
q P
For a knot we project on direct summand by choosing one idempotent

A= {)\:ll‘l, ey )\f’}, which propagates across crossings.
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Deformations  of s/(N) link homologies

Proof Step 4 — The X) decomposition

@ Look at summand of KhR*(K*) corresponding to {\3, \5} C .
Want to split it into tensor factors corresponding to {\7}, {A\5}.

I~

I~
o

<
y)
a+b| a+b <
L~ Y ] o L
~ ~ -
— - —u =
- = - e

V)
V) V) N
< <

tensoring with splitter foams the zip foam is invertible
gives isos between Homs by a unit-decorated unzip

N

composing with invertible foams
gives isos between Homs
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Deformations  of s/(N) link homologies

Proof Step 4 — The X) decomposition

@ Look at summand of KhR*(K*) corresponding to {\2, A5} C .
Want to split it into tensor factors corresponding to roots A1, \o.

I~

v b v b
= . a+b - < El
~ A 4 L - _ _ _ _ |
— ) g —u = |
Vi
Vi Vi N
A ) (
Proposition

e This root-splitting process works for cube of resolutions chain complexes.

o They compute the same link invariants, but are manifestly tensor products
of their root-colored parts.
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Deformations  of s/(N) link homologies

Proof Step 5 — Identifying the tensor factors

© The tensor factors from the previous step are complexes in the
subcategory NFoam™ €~ of NFoam?>, which consists of foams where
every k-facet is decorated by the {)\J’-‘}—idempotent.

Lemma

o NFoam™<* is isomorphic to N;Foam®.

o The isomorphism sends the \; tensor factor from the previous step to the
cube of resolutions complex computing KhR™ (K*).

This finishes the proof.
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Physical structure, HOMFLY-PT homology

@ Physical structure, HOMFLY-PT homology
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Physical structure, HOMFLY-PT homology

Large N limit

Physical expectation: sly homologies have a large N limit. Problem!

@ 2004: Khovanov-Rozansky: reduced Khovanov Rozansky homology
categorifies the reduced sly polynomial.

—~—N
KhR (Q)=C
@ 2005: Khovanov-Rozansky: reduced triply-graded HOMFLY-PT
homology categorifies the reduced HOMFLY-PT polynomial.

KhR™ (0) = C

@ 2006: Rasmussen: for a knot K there exist spectral sequences

—~——00 N
KhR ™ (K)|,_ov ~ KhR (K)

|la=q

which become trivial for large N.
@ 2016: W.: add “colored” in the above.
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Physical structure, HOMFLY-PT homology

More physical predictions

Large N stabilization is part of a system of expected relationships between
reduced colored sl and HOMFLY-PT homologies. Other main features:

——N ——M
o Differentials: KhR (K) ~» KhR (K) for N > M
. =00 —~—00 ®k
o Exponential growth: KhR~ (K*) = (KhR (K1)>

for sufficiently simple knots K, after collapsing the g-grading
@ Symmetries

3 a
4 P
1 . 5
2 . °
- ‘ R
a1 2 0 @ 2 :
“q i
2 4

Graphics from |

Dunfield-Gukov-Rasmussen 2005, Gukov-Stosié 2011, Gorsky-Gukov-Stosié
2013, Gukov-Nawata-Saberi-Stosié-Sutkowski 2016.
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Physical structure, HOMFLY-PT homology

Deformations and differentials

Theorem (W. 2016)

Let K be a knot, ) N; = N with N; € N, > kj = k with kj € N, and
write KX for K colored by /\k(DN , then there exists a spectral sequence:

KhR (K*) ~ Q) KhR ~ (K¥)
j

Corollary (differentials)
Let K be a knot and N > M. There exists a spectral sequence:

KhR (K) ~ KhR_ (K)
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Physical structure, HOMFLY-PT homology

Deformations and exponential growth

Theorem (W. 2016)

Let K be a knot, ) N; = N with N; € N, > kj = k with kj € N, and
write KX for K colored by /\k(DN , then there exists a spectral sequence:

KhR (K*) ~ Q) KhR " (K¥)
j

Corollary (> exponential growth)
Let K be a knot and k € IN. There exist spectral sequences:

KhR (KX)  (KhR (K))®k

~| |= for N> 0 .
——kN ——N
KhR (KK) ~ (KhR (K%))®*
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Physical structure, HOMFLY-PT homology

Further directions

@ Deformations help to prove the functoriality of colored sly homology
under link cobordisms, following an idea of Blanchet.

@ Deformed reduced link homologies produce interesting new slice genus
bounds, Lewark-Lobb.

@ What is g-holonomicity for link homologies?

@ The remaining features of the conjectured physical structure motivate
the development of glyn Lie superalgebra link homologies.

@ Relations to link homologies of a more analytic flavor, e.g.
Ozsvath-Szabé, Rasmussen knot Floer homology, which is a gly; link
homology, Ellis-Petkova-Vértesi.

@ Link homologies in other 3-manifolds, categorified
Witten-Reshetikhin-Turaev invariants, 4d TQFTs...
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