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Motivation

Reshetikhin-Turaev link invariants

The Reshetikhin-Turaev invariants for links in R3 give a function:

{triples (L, g, col)} RT−−→ C(q)

L is a framed, oriented link in R3,

g is a complex semi-simple Lie algebra,

col : π0(L)→ Irrepf .d .(g) is a coloring of the link components by

�nite-dimensional irreducible representations of g.

Question

How does this function depend on the three arguments?

For this talk:

Lie algebras are of type A: g = slN for various N ∈ N.

Mostly colorings by irreps CN and
∧k
CN for 0 ≤ k ≤ N.
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Motivation

Varying the Lie algebra

Fact

The Jones polynomial (which appears as RT(−, sl2,C2)) is uniquely
determined by its value on the unknot and the oriented skein relation:

q2V ( )− q−2V ( ) = (q − q−1)V ( )

Varying this skein relation, we get other link polynomials:

qNPN( )− q−NPN( ) = (q − q−1)PN( ) for RT(−, slN ,CN).

aP∞( )− a−1P∞( ) = (q − q−1)P∞( )
for the HOMFLY-PT polynomial ∈ Z[a±1](q).

∆( )−∆( ) = (q − q−1)∆( )
for the Alexander-Conway polynomial.

Paul Wedrich Some di�erentials Knots in Hellas 2016 4 / 22



Motivation

Varying the coloring

The �nite-dimensional irreducible representations of sl2 are indexed by

k ∈ N (in fact Vk := Symk(C2)). Redundancies in this countably-in�nite

list of invariants?

Theorem (Garoufalidis-Lê)

Let K be a framed knot in R3. The sequence of colored Jones polynomials

(RT(K , sl2, Sym
k(C2)))k∈N is q-holonomic.

So the sequence is governed by a linear recurrence relation (with

coe�cients polynomials in q and qk) and, thus, determined by a �nite part.

Analogous results hold for slN , for colored HOMFLY-PT polynomials, for

links, with other sequences of colors... Garoufalidis-Lauda-Lê.
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Motivation

Varying the link?

Lie algebras and colorings can be varied in families. Some links come in

families too, but let's take a di�erent perspective.

Instead of just links, consider link embeddings in R3 and smooth

cobordisms between them (in R3 × I ). Need categori�ed RT invariants:

C(q){g-colored oriented links} RT

{
bi-graded vector spaces

H∗(graded chain complex)

}
link homology LH

χq

Cobordisms:

LH(31)

LH(01)
Ideally functorial under link cobordisms.

Goal for this talk

Overview about the rank- and color-dependence of type A link homologies.

Paul Wedrich Some di�erentials Knots in Hellas 2016 6 / 22



sl(N) link homologies

Plan

1 Motivation

2 sl(N) link homologies

3 Physical structure, HOMFLY-PT homology

Paul Wedrich Some di�erentials Knots in Hellas 2016 7 / 22



sl(N) link homologies

Khovanov homology and its cousins

1999: Khovanov homology categori�es the Jones polynomial.

Kh(©) ∼= H∗(CP1){−1}

2004: Khovanov-Rozansky homology categori�es RT(−, slN ,CN).

KhRN(©) ∼= H∗(CPN−1){1− N}

2009: Wu and Yonezawa extended Khovanov-Rozansky homology to a

categori�cation of RT(−, slN ,
∧k
CN).

KhRN(©k) ∼= H∗(Gr(k ,N)){k(k − N)}

KhRN(K 1) = KhRN(K )
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sl(N) link homologies

Flavors of colored slN link homologies

1 Vanilla: via matrix factorizations, Khovanov-Rozansky, Wu, Yonezawa.

2 Representation theoretic: via category O,Mazorchuk-Stroppel, Sussan.

3 Combinatorial: via cobordism or foam categories, Bar-Natan,

Khovanov, Mackaay-Sto²i¢-Vaz, Lauda-Que�elec-Rose.

4 Algebro-geometric: via a�ne Grassmannians, Cautis-Kamnitzer-Licata

5 Diagram-algebraic: via categori�ed tensor products, Webster.

6 Symplectic: via Floer homology, Seidel-Smith, Manolescu, Abouzaid.

7 Physical: via BPS state counting, Gukov-Schwarz-Vafa, et.al.
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sl(N) link homologies

Two questions about the slN link homology family

What kind of geometric and topological information is accessible to it?

What relations exist between its members?
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sl(N) link homologies

Geometric and topological information

Concordance homomorphisms, slice genus bounds, Rasmussen, Lobb,

Wu.

Thurston-Bennequin number bounds, Shumakovitch, Plamenevskaya,

Ng.

Splitting number bounds, Batson-Seed.

Unknot detection, Kronheimer-Mrowka.

· · ·

Fact

These results rely on spectral sequences between di�erent link homologies.
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sl(N) link homologies

Relations via deformation spectral sequences

2002: Lee constructed spectral sequences

Kh(K ) C
2 Kh(L) C

2|π0(L)|

leading to Rasmussen's concordance homomorphism.

2004: Gornik constructed spectral sequences

KhRN(K ) C
N KhRN(L) C

N|π0(L)|

leading to Lobb's concordance homomorphism.

2006: Mackaay-Vaz constructed spectral sequences:

KhR3(K ) KhR2(K )⊕C
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sl(N) link homologies

More deformations

Theorem (folklore)

Let K be a knot and
∑

Nj = N with Nj ∈ N, then there exists a

deformation spectral sequence:

KhRN(K ) 
⊕
j

KhRNj (K )

Theorem (Rose-W. 2015)

Let K be a knot and
∑

Nj = N with Nj ∈ N, and write K k for K colored

by
∧k
CN , then there exists a deformation spectral sequence:

KhRN(K k) 
⊕

∑
kj=k

⊗
j

KhRNj (K kj )

Mutatis mutandis for links.
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sl(N) link homologies

Proof strategy

Theorem (Rose-W. 2015)

Let K be a knot and
∑

Nj = N with Nj ∈ N, and write K k for K colored

by
∧k
CN , then there exists a deformation spectral sequence:

KhRN(K k) 
⊕

∑
kj=k

⊗
j

KhRNj (K kj )

1 Wu's spectral sequence

2 Unknot case

3
⊕

decomposition

4
⊗

decomposition

5 Identifying tensor factors
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sl(N) link homologies

Proof Step 1 � Wu's spectral sequence

1 Wu's construction of colored slN homology uses matrix factorization

with potential XN .

Following ideas of Gornik and Rasmussen:

Potential P(X ) =
∏
λ∈Σ(X − λ) ∈ C[X ] of degree N with root

multiset Σ gives a singly-graded, �ltered link homology theory

KhRΣ(−) and spectral sequences

KhRN(K k) KhRΣ(K k)

It remains to compute KhRΣ(K k) in terms of undeformed homologies.
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sl(N) link homologies

Proof Step 2 � The unknot case

2 The link homology theory KhRΣ(−) contains � and is controlled by �

a (1 + 1)-dimensional TQFT. The corresponding commutative

Frobenius algebra appears as the unknot invariant.

Let Σ = {λN1
1 , . . . , λNl

l }, P(X ) =
∏

j(X − λj)Nj , then we have:

KhRΣ(©1) ∼=
C[X ]

〈P(X )〉
∼=
⊕
j

C[X ]

〈(X − λj)Nj 〉
∼=
⊕
j

KhRNj (©1).

Summands are indexed by roots of P(X ). And in the colored case:

KhRΣ(©k) ∼=
Sym[X]

〈hN−k+i (X− Σ) | i > 1〉
∼=

⊕
∑

kj=k

⊗
j

KhRNj (©kj ).

Summands are indexed by size k multisubsets {λk11 , . . . , λ
kl
l } of roots.
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sl(N) link homologies

Proof Step 3 � The
⊕

decomposition

3 KhRΣ(K k) is a KhRΣ(©k)-module. If you believe in functoriality:

4 The proof of the
⊗

decomposition and

5 the identi�cation of the tensor factors depend heavily on the particular

link homology construction. Here: slN -foams of Que�elec-Rose

coupled to Karoubi envelope techniques inspired by Bar-Natan

Morrison.
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Physical structure, HOMFLY-PT homology

Large N limit

Physical expectation: slN homologies have a large N limit.

2004: Khovanov-Rozansky: reduced Khovanov Rozansky homology

categori�es the reduced slN polynomial.

K̃hR
N

(©) ∼= C

2005: Khovanov-Rozansky: reduced HOMFLY-PT homology

categori�es the reduced HOMFLY-PT polynomial.

K̃hR
∞

(©) ∼= C
2006: Rasmussen: for a knot K there exist spectral sequences

K̃hR
∞

(K )|a=qN  K̃hR
N

(K )

which become trivial for large N.

2016: W.: add �colored� in the above.
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Physical structure, HOMFLY-PT homology

More physical predictions

Large N stabilization is part of a system of expected relationships between

reduced colored slN and HOMFLY-PT homologies. Other main features:

Di�erentials: K̃hR
N

(K ) K̃hR
M

(K ) for N ≥ M

Exponential growth: K̃hR
∞

(K k) ∼=
(
K̃hR

∞
(K 1)

)⊗k
for su�ciently simple knots K , after collapsing the q-grading

Symmetries

Dun�eld-Gukov-Rasmussen 2005, Gukov-Sto²i¢ 2011, Gorsky-Gukov-Sto²i¢

2013, Gukov-Nawata-Saberi-Sto²i¢-Suªkowski 2016.
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Physical structure, HOMFLY-PT homology

Deformations and di�erentials

Theorem (W. 2016)

Let K be a knot,
∑

Nj = N with Nj ∈ N,
∑

kj = k with kj ∈ N, and

write K k for K colored by
∧k
CN , then there exists a spectral sequence:

K̃hR
N

(K k) 
⊗
j

K̃hR
Nj

(K kj )

Corollary (di�erentials)

Let K be a knot and N ≥ M. There exists a spectral sequence:

K̃hR
N

(K ) K̃hR
M

(K )
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Physical structure, HOMFLY-PT homology

Deformations and exponential growth

Theorem (W. 2016)

Let K be a knot,
∑

Nj = N with Nj ∈ N,
∑

kj = k with kj ∈ N, and

write K k for K colored by
∧k
CN , then there exists a spectral sequence:

K̃hR
N

(K k) 
⊗
j

K̃hR
Nj

(K kj )

Corollary (≥ exponential growth)

Let K be a knot and k ∈ N. There exist spectral sequences:

K̃hR
kN

(K k)  (K̃hR
N

(K 1))⊗k

K̃hR
∞

(K k) (K̃hR
∞

(K 1))⊗k

∼= ∼= for N � 0 .
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